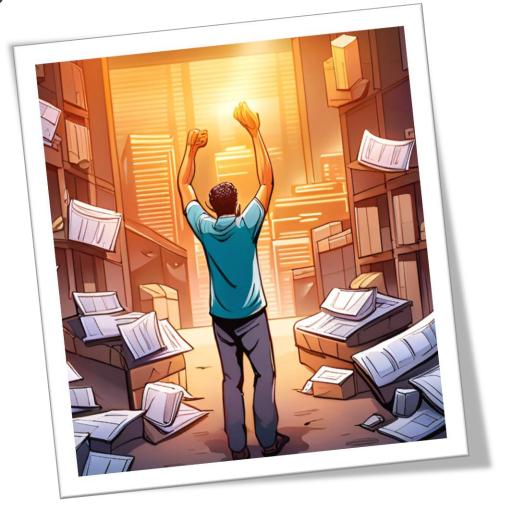


SCHOOL OF PUBLIC HEALTH BLOOMINGTON


Data Sharing: Pros, Cons, and How-to

Stephanie Dickinson, sd3@indiana.edu Biostatistics Consulting Center, IU SPH, NSC Comparative Data Analytics Core at UAB

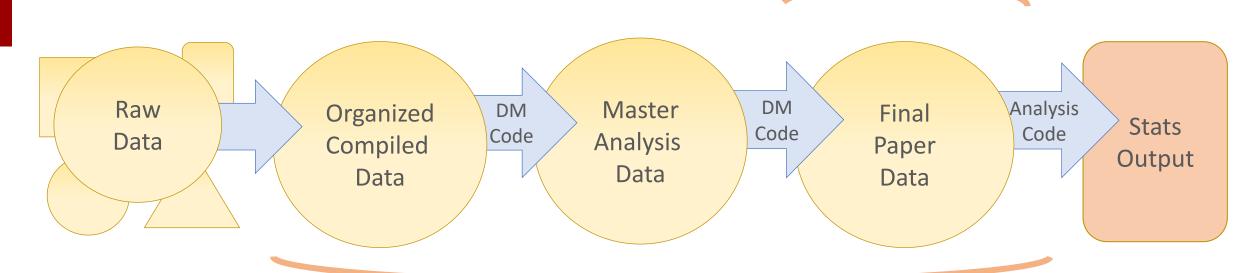
INDIANA UNIVERSITY BLOOMINGTON


Outline

- Challenges
- Advantages
- What & when to share
- How-to

Challenges of Data Sharing

- Researchers are not sure what to share or how
- Time and Money
 - Organizing data, codebooks, repositories takes time
 - One more thing to do for grant proposal (DMS) or journal submission
- Needs strong organization and communication in team
- Potential for errors and inconsistencies in data or analysis
- Ethical and legal questions regarding data ownership and privacy:
 - Questions of data ownership, access rights, and usage control
 - Human subject data privacy



Advantages of Data Sharing

- It's **required** for NIH funding and many journals
- Allows analytic Reproducibility
 - Reproduce all results, running code provided on data provided
- Allows sensitivity or other, New analyses
- Advances science for *New research* questions.
- Organized data and clean code reduces errors in publications
- Saves time later to share with collaborators or scientific community

What Data to Share

- Lab books
- Paper surveys
- REDCap, Qualtrics
- Bio samples

- Excel, CSV, SAS
- Tabulated into rows and columns
- Data dictionary
- SDTM

- Derived variables
- Recodes, Transforms
- Subject level,
 Longitudinal, etc
- ADaM

- Data necessary and sufficient to reproduce analyses in paper
- Clean and tidy

Note: Syntax/Code (Script) is used for each Data Management (DM) step and Analysis

When to Share

1. "At a minimum, scientific data supporting a publication must be shared **by the time of publication** ..."

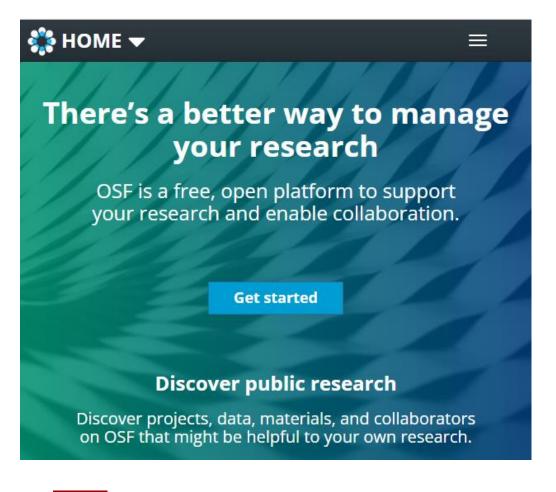
2. "Other scientific data must be shared **by the end of the research project** or protocol."

https://oir.nih.gov/sourcebook/intramural-programoversight/intramural-data-sharing/2023-nih-data-management-sharingpolicy

How to Share Data

Include
Codebook/Data
Dictionary and File
Directory

Codebook: variables, labels, definition, and coding (e.g. 1=Trt, 0=Ctrl).


FAIR (Findable, Accessible, Interoperable, Reusable)

File Directory: Clearly organize and label files.

Repositories

- We like **OSF.io** (Open Science Framework) for easy public file sharing
- Support effective data discovery and reuse.
- Consider repositories specific to the discipline or data type.
- See "<u>Selecting a Repository</u>" and "<u>Repositories for</u>
 <u>Sharing Scientific Data</u>" from NIH
- See "<u>Data Repository Guidance</u>" from Nature
- Whatever you choose, put the LINK in your paper

View data repositories

Biological sciences: Nucleic acid sequence; Protein sequence; Molecular & supramolecular structure; Neuroscience; Omics; Taxonomy & species diversity;

Mathematical & modelling resources; Cyt focused resources

- Health sciences
- Chemistry and Chemical biology
- Earth, Environmental and Space science sciences; Astronomy & planetary sciences sciences; Ecology; Geomagnetism & Palae sciences
- Physics
- Materials science
- Social sciences
- Generalist repositories

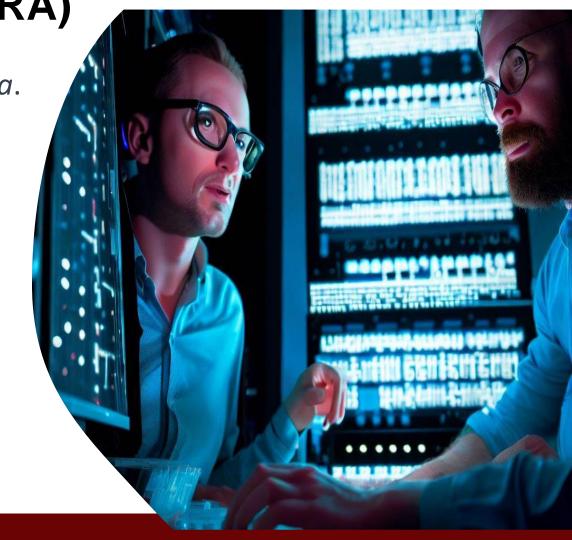
Omics <u>→</u> Functional genomics

Functional genomics is a broad experimental category, and *Scientific Data*'s recommendations in this discipline likewise bridge disparate research disciplines. Data should be deposited following the relevant community requirements where possible.

Please refer to the <u>MIAME</u> standard for microarray data. Molecular interaction data should be deposited with a member of the <u>International Molecular Exchange Consortium</u> (IMEx), following the <u>MIMIx recommendations</u>.

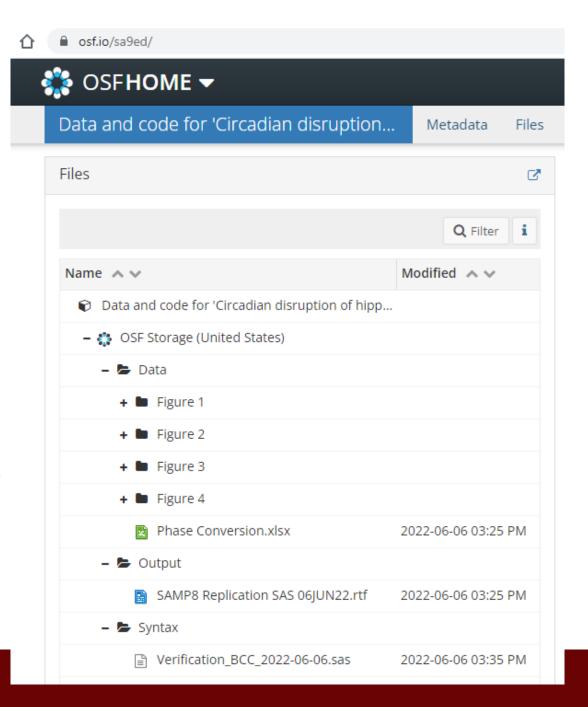
For data linking genotyping and phenotyping information in human subjects, we strongly recommend submission to dbGAP, EGA or JGA, which have mechanisms in place to handle sensitive data.

<u>ArrayExpress</u>	view FAIRsharing entry
Gene Expression Omnibus (GEO)	view FAIRsharing entry
GenomeRNAi	view FAIRsharing entry
dbGAP	view FAIRsharing entry
The European Genome-phenome Archive (EGA)	view FAIRsharing entry
<u>Database of Interacting Proteins (DIP)</u>	view FAIRsharing entry


One example:

The Sequence Read Archive (SRA)

• NIH/NCBI archive of all types of sequencing data.

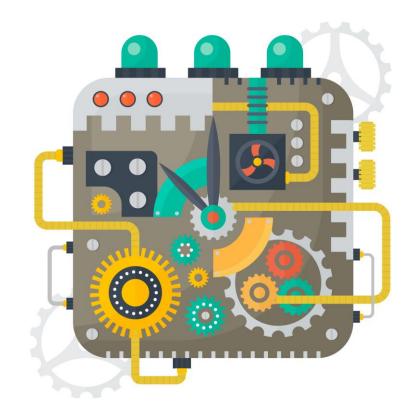

 Largest publicly available repository of highthroughput sequencing data.

- Accepts data from all branches of life, metagenomics, and environmental surveys
- Including those involving human subjects (deidentified).
- Stores raw sequencing data and alignment information.

Examples

- For papers we verify & support through NSC, we share data and code on OSF.io, e.g. https://osf.io/sa9ed/
- For two papers we reviewed, data were public, and conclusions were upheld, but there were challenges.
 - Iram, T., Kern, F., Kaur, A. et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605, 509–515
 (2022). https://doi.org/10.1038/s41586-022-04722-0
 - Li, V.L., He, Y., Contrepois, K. et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature 606, 785–790 (2022). https://doi.org/10.1038/s41586-022-04828-5

The End



RRT (Rigor, Reproducibility, Transparency)

Analysis Verification Checklist

- 1. Verify that you can *reproduce* every numeric result with final data and code shared.
- 2. Verify that the analyses are described *transparently* in text and tables.
- 3. Verify that the analyses were done *rigorously*.

